Referat-info
Меню сайту
Категорії розділу
Хімія [91]
Block title
Block title
Block title
Головна » Статті » Хімія » Хімія

Лужноземельні метали

Частина перша. Загальна характеристика II А групи Періодичної Системи елементів. 
  
У цій групі розташовуються наступні елементи: Be, Mg, Ca, Sr, Ba, Ra. Вони мають спільну електронну конфігурацію: (n-1) p 6 ns 2, крім Ве 1s 2 2s 2. У силу останнього, властивості Ве трохи відрізняються від властивостей підгрупи в цілому. Властивості магнію теж відрізняються від властивостей підгрупи, але в меншій мірі. У ряді Са - Sr - Ba - Ra властивості змінюються послідовно. Відносна електронегативність в ряду Ве - Ra падає тому зі збільшенням розміру атома валентні електрони віддаються охочіше. Властивості елементів ІІА підгрупи визначаються легкістю віддачі двох ns-електронів. При цьому утворюються іони Е 2 +. При вивченні дифракції рентгенівських променів з'ясувалося, що в деяких з'єднаннях елементи IIА підгрупи виявляють одновалентності. Прикладом таких сполуки є ЕГ, які виходять при додаванні Е до розплаву ЕГ 2. Всі елементи цього ряду не зустрічаються в природі у вільному стані через високу активності.   
  
Частина друга. Берилій і 
магній
  
Історія берилію 
Сполуки берилію у вигляді дорогоцінних каменів були відомі ще в давнину. З давніх пір 
люди шукали і розробляли родовища блакитних аквамаринів, зелених смарагдів, зеленувато-жовтих беріллов і золотистих хризоберилу. Але тільки в кінці 18 століття хіміки запідозрили, що в берилу є якийсь новий невідомий елемент. У 1798 році французький хімік Льюїс Ніколас Воклен виділив з берилу окис "La terree du beril", відрізнялася від окису алюмінію. Ця окис надавала солям солодкий смак, не утворювала квасцов, розчинялася в розчині карбонату амонію і не осаджувалася оксалатом калію. Металевий берилій був вперше отриманий в 1829 році відомим німецьким вченим Веллером і одночасно французьким ученим Бюсси, який отримав порошок металевого берилію відновленням хлористого берилію металевим калієм. Початок промислового виробництва відноситься до 30-40 рр.. минулого сторіччя. 
Історія магнію 
Свою назву елемент отримав по місцевості Магнезія в Стародавній Греції. 
Природні магнийсодержащем матеріали магнезит і доломіт здавна використовувалися в будівництві. 
Перші спроби виділити металеву основу магнезії в чистому вигляді були зроблені на початку XIX ст. знаменитим англійським фізиком і хіміком Гемфрі Деві (1778-1829) після 
того, як він піддав електролізу розплави їдкого калі та їдкого натру і отримав металевий Na та K. Він вирішив спробувати аналогічним чином здійснити розкладання оксидів лужноземельних металів і магнезії. У своїх початкових дослідах Деві пропускав струм через вологі оксиди, оберігаючи їх від зіткнення з повітрям шаром нафти, а проте при цьому метали сплавлялися з катодом і їх не вдавалося відокремити. 
Деві пробував застосовувати безліч різних методів, але всі вони з різних причин виявлялися малоуспішними. Нарешті, в 1808 р. його спіткала удача - він змішав вологу магнезію з оксидом ртуті, помістив масу на платівку з платини і пропустив через неї струм; амальгаму переніс у скляну трубку, нагрів, щоб видалити 
ртуть, і отримав новий метал. Тим же способом Деві вдалося отримати барій, кальцій і стронцій. Промислове виробництво магнію електролітичним способом було розпочато в Німеччині в кінці 19 століття. Теоретичні та експериментальні роботи по отриманню магнію електролітичним способом у нашій країні були виконані П.П. Федотьевим; процес відновлення оксиду магнію кремнієм у вакуумі досліджував П.Ф. Антипин. 
  
Поширення 
Берилій відноситься до числа не дуже поширених елементів: його вміст в земній корі становить 0,0004 вагу. %. Берилій в природі знаходиться у зв'язаному стані. Найважливіші 
мінерали берилію: берил-Be 3 Al 2 (SiO 3) 6, хризоберил-Be (AlO 2) 2 і фенакіт-Be 2 SiO 4. Основна частина берилію розпорошена в якості домішок до мінералів ряду інших елементів, особливо алюмінію. Берилій міститься також в глибинних опадах морів і золі деяких кам'яного вугілля. Деякі різновиди берилу, пофарбовані домішками в різні кольори, відносяться до коштовних каменів. Такі, наприклад, зелені смарагди, блакитнувато-зелені аквамарини. 
Магній - один з найпоширеніших у земній корі елементів. Зміст магнію складає 1,4%. До числа найважливіших мінералів відносяться, зокрема, вуглекислі карбонатні породи, що утворюють величезні масиви на суші і навіть цілі гірські хребти - магнезит MgCO 3 та доломіт MgCO 3 žCaCO 3. Під шарами різних наносних порід спільно з покладами кам'яної солі відомі колосальні поклади та іншого легкорозчинного магнийсодержащем мінералу - карналіту MgCl 2žKClž6H 2 O. Крім того, у багатьох мінералах магній тісно пов'язаний із кремнеземом, утворюючи, наприклад, олівін [(Mg, Fe) 2 SiO 4] і рідше зустрічається форстерит (Mg 2 SiO 4). Інші магнийсодержащем мінерали - це бруціт Mg (OH) 2, кізерит MgSO 4, Епсон MgSO 4 ž7H 2 O, каїніт MgSO 4 žKClž3H 2 O. На поверхні Землі магній легко утворює водяні силікати (тальк, азбест і ін), прикладом яких може служити серпентин 3MgOž2SiO 2 ž2H 2 O. З відомих мінералів близько 13% містять магній. Проте природні сполуки магнію широко зустрічаються й у розчиненому вигляді. Крім різних мінералів та гірських порід, 0,13% магнію у вигляді MgCl 2 постійно містяться у водах океану (його запаси тут невичерпні - близько 6ž10 16 т) і в солоних озерах і джерелах. Магній також входить до складу хлорофілу в кількості до 2% і виступає тут як комплексоутворювач. Загальний вміст цього елемента в живій речовині Землі оцінюється величиною порядку 10 11 тонн. 
Отримання 
Основний (близько 70%) спосіб отримання магнію - 
електроліз розплавленого карналіту або MgCl 2 під шаром флюсу для захисту від окислення. Термічний спосіб отримання магнію (близько 30%) полягає у відновленні обпаленої магнезиту або доломіту. Берилієві концентрати переробляють на оксид або гідроксид берилію, з яких отримують фторид або хлорид. При отриманні металевого берилію здійснюють електроліз розплаву BeCl 2 (50 вагу.%) І NaCl.Такая суміш має температуру плавлення 300 о С проти 400 о С для чистого ВеCl 2. Також берилій отримують магній-або алюмотерміческі при 1000-1200 0 C з Na 2 [BeF 4]: Na 2[BeF 4] + 2Mg = Be + 2Na + МgF 2. Особливо чистий берилій (в основному для атомної промисловості) отримують зонної плавкою, дистиляцією в вакуумі і електролітичним рафінуванням. 
  
Особливості 
Берилій є "чистим" елементом. У природі магній зустрічається у вигляді трьох стабільних ізотопів: 24 Mg (78,60%), 25 Mg (10,11%) і 26 Mg (11,29%). Штучно були отримані ізотопи з масами 23, 27 і 28. 
Берилій має атомний номер 4 і атомна вага 9,0122. Він знаходиться в другому періоді періодичної системи і очолює головну підгрупу 2 групи. 
Електронна структура атома берилію - 1s 2 2s 2. При хімічній взаємодії атом берилію збуджується (що вимагає витрати 63 ккал / г × атом) і один з 2s-електронів переходить на 2р-орбіталь що визначає специфіку хімії берилію: він може проявляти максимальну ковалентность, що дорівнює 4, утворюючи 2 зв'язку за обмінним механізмом, і 2 по донорно-акцепторного. На кривій потенціалів іонізації берилій займає одне з чільних місць. Остання відповідає його малому радіусу і характеризує берилій як елемент не особливо охоче віддає свої електрони, що в першу чергу визначає малу ступінь хімічної активності елемента. З точки зору електронегативності берилій може розглядатися як типовий перехідний елемент між електропозитивних атомами металів, легко віддають свої електрони, і типовими комплексо-просвітників, що мають тенденцію до утворення ковалентного зв'язку. Берилій проявляє діагональну аналогію з алюмінієм в більшій мірі, ніж Li c Mg і є кайносімметрічним елементом. Берилій та його сполуки дуже токсичні. ГДК в повітрі - 2 мкг / м 3. 
У періодичній системі елементів магній розташовується в головній підгрупі II групи; порядковий номер магнію - 12, атомна вага 24,312. Електронна конфігурація збудженого атома - 1s 2 2s 2 2p 6 3s 2; будова зовнішніх електронних оболонок атома Mg (3s 2) відповідає його нульвалентному 
стану. Збудження до двовалентного 3s 1 3p 1 вимагає витрати 62 ккал / г-атом. Іонізаційні потенціали магнію менше, ніж берилію, тому з'єднання магнію характеризуються більшою часткою іонності зв'язку. За комплексообразовательной здібності магній теж поступається берилію. Взаємодія з елементами IIIВ групи з недобудованими d-оболонками має деякі особливості. У цю групу входять Sc, Y, Ln, і Th. Ці елементи утворюють з магнієм ряд проміжних фаз і добре розчиняються в ньому в рідкому стані. Діаграми стану сумішей цих елементів з магнієм - евтектичного характеру. Розчинність цих елементів в магнії у твердому стані не велика (2 - 5% за масою). Зі лужноземельними і особливо з лужними металами магній не утворює значною області розчинності в твердому стані, що пов'язано з великим відмінностями атомних радіусів. Винятком є ​​літій, атомний радіус якого відрізняється від атомного радіусу магнію на 2%. Системи магнію з міддю, сріблом і золотом - евтектичного типу. Розчинність срібла при температурі евтектики -16% за масою. 
Фізичні властивості 
Берилій - метал сріблясто-білого кольору. Досить твердий і крихкий. Володіє діамагнітними властивостями. На повітрі він покривається тонкою плівкою окисной зраджує металу сірий, матовий колір і 
оберігає від подальшої корозії. Стисливість берилію дуже мала. Менше всіх металів (у 17 разів менше Аl) затримує рентгенівське випромінювання. Він кристалізується в ГПУ-структурі з періодами а = 0,228 нм, і з = 0,358 нм, КЧ = 6. При 1254 о С гексагональна a-модифікація переходить у кубічну b. Берилій утворює евтектичні сплави з Al і Si. 
Магній - також має сріблясто-білий колір. Щодо берилію він м'якший і пластичний. На повітрі тьмяніє за рахунок окислення. Магній добре розчиняє водень. На відміну від берилію парамагнітен. Пари магнію містять молекули Mg 2, 
енергія дисоціації яких оцінюється в 7 ккал / моль. Стисливість Mg мала, під тиском в 100 тис. атм його обсяг зменшується до 0,85 вихідного. Магній кристалізується в ГПУ-структурі. Для магнію характерно перекриття першої та другої зон Бріллюена. 

Хімічні властивості елементів

З хімічної точки зору Ве і особливо магній - активні метали, з високою спорідненістю до окислювача (кисень, галогеніди та ін.) На повітрі берилій і магній покриваються тонкою оксидною плівкою. Вода не діє на берилій. Магній повільно витісняє з води водень при кип'ятінні. Обидва елементи згоряють на повітрі при нагріванні з реакції 2Е + О 2 = 2ЕО, виділяючи багато тепла і світла (на цьому засновано застосування магнію в піротехніку). Крім окисів утворюється ще Е 3 N 2. Магній загоряється при 650 0 С, берилій - при 900 0 С. Обидва з'єднуються з галогенами, а при нагріванні - з сіркою і азотом. Обидва елементи відновлюють Si, Ti, K, Ba з оксидів. Магній, як правило, реагує енергійніше. Обидва елементи добре розчиняються у розбавлених кислотах, які не є окислювачами. Берилій розчиняється в HNO 3 лише при нагріванні. Гаряча кон-центрувати сірчана кислота повільно розчиняє Е виділяючи SO 2 або H 2 S. HГ (Г = Сl, Br, I) у газоподібному стані легко діють на Е. На магній не надають помітного дії HF будь-якої концентрації, розчини NaOH, Na 2 CO 3. На берилій ж концентровані розчини лугів діють вже при кімнатній температурі за схемою:

2NaOH + Be + 2H 2 O = Na 2 [Be (OН) 4] + H 2. У цьому берилій подібний з алюмінієм. З воднем сполучається безпосередньо лише магній (при тиску). Ве до температури плавлення з воднем не реагує, однак при термічному розкладанні беріллійорганіческіх сполук (2000 о С) утворюється ВeH 2.

З водним розчином аміаку берилій не реагує. Магній теж майже не розчиняється в аміачному розчині, однак, поступово розчиняється в розчині солей амонію за схемою: 2NH 4 + + Mg = Mg 2 + + H 2 + NH 3. Ве з солей амонію розчиняється лише в міцному розчині NH 4 F по схемі: 4NH 4 F + Be = (NH 4) 2 BeF 4 + H 2 + 2NH 3. Відмінності в хімізмі розчинення доводять велику комплексообразовательную здатність берилію. 
Хімічні властивості з'єднань елементів 
Нормальні електродні потенціали реакцій Ве-2е = Ве 2 + і Mg - 2е = Mg 2 + дорівнюють 
відповідно j 0 =- 1,7 В і j 0 =- 1,55 В.

З наведених даних видно, що теплоти утворення аналогічних похідних берилію і магнію близькі при порівняно малих обсягах металлоідних атомів (F, O, N) і сильно розходяться при великих (Cl, Br, I, S). 
Гідрид Ве отримують змішуванням гідриду літію з хлоридом Ве, або за схемою: 
LiAlH 4 + Be (CH 3) 2 = BeH 2 + LiAlH 2 (CH 3) 3. 
Гідрид магнію отримують безпосередньо з елементів при нагріванні і тиску, а також при нагріванні Mg (C 2 H 5) 2 
ЕH 2 - білі тверді речовини, погано розчинні в ефірі. Виділяють водень із води і спиртів: ЕН 2 + 2Н 2 О = Е (ОН) 2 + 2Н 2 і ЕН 2 + 2СН 3 ОН = Е (ОСН 3) 2 + 2Н 2. 
Окиси Ве і Mg - вельми тугоплавкі, білі, малорозчинні у воді речовини. Можуть бути отримані прокаливанием оксалатів, нітратів, карбонатів: 
ЕСС 3 = ЕО + СО 2,              2Е (NO 3) 2 = 2ЕО + 4NO 2 + O 2, ЕС 2 О 4 = СO 2 + СО + ЕО. 
Також можуть бути отримані спалюванням 
відповідних металів в кисні.   Розчиняються в кислотах: ЕО + 2Н + = Е 2 + + Н 2 О. 
ВЕО розчиняється у лугах за схемою: BeO + 2NaOH + H 2 O = Na 2 [Be (OН) 4]. Ядерні відстані в 
кристалах MgO (т. пл. 2850 о С) і BеО (т. пл. 2580 о С) рівні відповідно 2,10 і 1,64 A, а у їхніх індивідуальних молекул (у парах) - 1,33 і 1,75 A. Пари ЕO сильно дисоційований на елементи. Охолодження розплаву ВеО веде до утворення скла. Кристали ВеО мають структуру вюрциту, що свідчить про малу полярності зв'язку. Кристали MgO мають структуру NaCl. Обидві окису розчиняються в кислотах тим важче, чим сильніше вони були попередньо прожарений. Таке зниження реакційної здатності обумовлено в даному випадку укрупненням кристалів. При зберіганні на повітрі оксид магнію поступово поглинає вологу і CO 2, переходячи в Mg (OH) 2 і в MgCO 3. Окис магнію зрідка зустрічається в природі (мінерал періклаз). Отримана прокаливанием природного магнезиту MgO є вихідним продуктом для виготовлення різних вогнетривких виробів. 
Білі аморфні гідроокису магнію і берилію мало розчиняються у воді. Розчинена частина Mg (OH) 2 дисоційований за типом 
підстави і є електролітом слабкої сили, а Ве (ОН) 2 має амфотерні властивості і дисоціює за сумарною схемою: 
Ве 2 + + 2ОН - = Ве (ОН) 2 = 2Н + + ВеО 2 2 -. 

Гидроокись берилію взагалі є єдиною підставою в IIA групі, яка має амфотерні властивості. Осадження Ве (OH) 2 в процесі нейтралізації кислого розчину (за схемою: Е 2 + +2 ОН - = Е (ОН) 2) настає при pH = 5,7, а Mg (OH) 2 - при рН = 10,5. Ве (ОН) 2 - є полімерним з'єднанням, тому його розчинність у воді незначна (РПР = 22). Зважаючи на слабкість кислотних властивостей Ве (ОН) 2 беріллати сильно гідроліз у водному розчині. При розчиненні Ве (ОН) 2 в кислотах утворюються тетраедрічекіе аквакомплекс [Ве (Н 2 О) 4] 2 +, у лугах - гидроксокомплекса [Be (OH) 4] 2 - (або [Be (OH) 3] -) за схемою : Ве (ОН) 2 + 2OH - = [Be (OH) 4] 2 -. Берилій в берріліат-іоні sp 3-гібридизувати, а сам беррілат-іон має форму тетраедра. КЧ Ве = 4. Ве (ОН) 2 починає втрачати воду вже при 230 0 С. Беріллати типу К 2 ВеО 2 існують тільки у твердому стані. Вони можуть бути отримані розчиненням порошку Ве на розплави лугів. Основні властивості у Ве (ОН) 2 переважають над кислотними, але виражені менш значно, ніж у Mg (ОН) 2. Гідроокис магнію зустрічається в природі (мінерал брусит). РПР Mg (OH) 2= 11. Mg (ОН) 2 володіє тільки основними властивостями. Однак, взаємодією Mg (OH) 2 c 65%-ним розчином NaOH при 100 0 С може бути отриманий нестійкий у водному середовищі тетрагідроксомагнезат натрію - Na 2 [Mg (OH) 4]. Крім кислот, гідроксид магнію розчинний в розчинах солей амонію за схемою: Mg (OH) 2 + 2NH 4 + = Mg 2 + + 2NH 3 + 2H 2 О. Тому розчином аміаку не можна повністю осадити гідроокис магнію, наприклад з хлориду, тому що наступний процес рівноважний: 
МgCl 2 + NH 4 OH = NH 4 Cl + Mg (ОН) 2. 
При нагріванні гідроокис магнію реагує з Р, Se, S (Х = Se, S): 
6Mg (ОН) 2 + 4P = 6MgО + 4РН 3 + 3О 2 і 2Mg (ОН) 2 + 2Х = 2MgО + 2Н 2 Х + О 2 
Обидві гідроокису добре розчиняються в кислотах: Е (ОН) 2 + 2Н + = Е 2 + + 2H 2 О. Гідроксид магнію в промисловості отримують діючи на розчинні 
солі магнію вапняним молоком. Для магнію відома аналогічна гідроокису етоксідная похідна Mg (OC 2 H 5) 2. Вона може бути отримана взаємодією амальгами магнію зі спиртом і являє собою білий порошок, розчинний у спирті і розкладається водою. Взаємодією свежеосажденная Mg (OH) 2 з 30%-ної H 2 O 2 може бути отримана розчинна у воді гідратне перекис-окис магнію MgO 2. 3MgO. NH 2 O, вона застосовується як антисептик, для шлунка тому з водою дає Мg (ОН) 2і перекис водню. Багато з солей берилію і магнію добре розчиняються у воді. Іони Е 2 + безбарвні. Mg 2 + повідомляють розчину гіркий смак, Ве 2 + - солодкуватий. Солі Ве схильні гідролізу при кімнатній температурі і дають кисле середовище, солі Mg - в меншій мірі. Наприклад, гідроліз сульфатів і галогенідів проходить за схемами: 
1. 2ЕSO 4 + 2Н 2 О = (Еон) 2 SO 4 + Н 2 SO 4 
2. (Еон) 2 SO 4 + 2H 2 O = 2Е (OH) 2 + Н 2 SO 4 
1. ЕГ 2 + Н 2 О = HГ + ЕОНГ 
2. ЕОНГ + 2Н 2 О = Е (ОН) 2 + НГ. 
Причому гідроліз йде в основному по першій стадії до утворення основних солей. Відношення заряду до радіусу у Be 2 + - Велика, в результаті чого він має високу поляризующей здатністю і його комплексообразовательние властивості підвищені. 
Майже всі галоїдні солі берилію і магнію безбарвні, розпливаються на повітрі і легкорозчинних у воді за винятком МgF 2, розчинність якого дуже мала (0,08 г / л). Для хлориду магнію 
характерні кристалогідрати MgCl 2. NH 2 O (n = 1,2,4,6,8,12). Для хлориду берилію характерні з'єднання типу ВеCl 2. 2R (R-ацетон, ацетальдегід, діетиламін, етиловий ефір, етилендіамін, піридин і ін) Обидва хлориду приєднують аміак з утворенням ЕCl 2. NNH 3 (n = 2,4,6).   MgCl 2 широко поширений в природі у вигляді мінералів - бішофіту MgCl 2. 2Н 2 О, карналіту МgСl 2. KCl. 6H 2 O ін При утворенні галогенідів берилію, його атоми збуджуються: 2s 2 ® 2s 1 2p 1 при цьому за рахунок розпарювання виникають дві ковалентні зв'язки і відбувається sp-гібридизація: валентні електрони утворюють два sp-гібридних хмари лежать на одній прямій і витягнутих у протилежний напрямках. Таким чином молекули ВЕГ 2 - мають лінійна будівля. ВеF 2 отримують нейтралізацією плавикової кислоти гідроокисом берилію а MgF 2 безпосередньо з елементів або обмінної реакцією: Мg 2 + + 2F - = MgF 2 ¯. Хлорид Ве можна отримати за наступними схемами при нагріванні: 
ВЕО + С + Сl 2 = BeCl 2 + СО; 2ВеО + СOCl 2 = ВеCl 2 + CO 2. 
ВеCl 2 - має 
полімерне будову. Більшість солей виділяється з розчинів у вигляді кристалогідратів (ВеCl 2. 2H 2 O, ВеI 2. 4H 2 O, MgBr 2 × 6H 2 O). При їх нагріванні відбувається відщеплення частини НГ і залишаються важкорозчинні у воді основні солі. Реакції приєднання характерні головним чином для фторидів, утворюють комплекси типів M [ЕГ 3] і M 2 [ЕГ 4], де М-одновалентних метал, наприклад Tl 2 [BeCl 4], Na 2 [BeCl 4] 
Нітрати Ве і Мg легкорозчинних не тільки у воді, але й у спирті. Mg (NO 3) 2 зустрічається в природі. Кристалізуються вони зазвичай у вигляді Mg (NO 3) 2 × 6H 2 O і Ве (NO 3). 4Н 2 О. Е (NO 3). Nн 2 О можна отримати діючи азотною кислотою на 
відповідні метали, ЕО, Е (ОН) 2, ЕСО 3. Для Ве n буває 4,3,2 (n ¹ 0), а для магнію n може дорівнювати 9,6,2 і 0. При нагріванні вони розкладаються, отщепляя воду, NO 2 і О 2: 
2Е (NO 3) 2. NH 2 O = nH 2 O + 2ЕO + 4NO 2 + О 2. 
Для сульфатів Ве і Mg характерні легкорозчинні кристалогідрати ВеSO 4. 4H 2 O і MgSO 4 × nH 2 O (n = 1,2,3,4,5,6,7,12). Перший повністю зневоднюється при 400 0 С, другий при 200 0 С. ВеSO 4 отримують дією розбавленої сірчаної кислоти на окис чи гідроокис берилію. Розчин BeSO 4 здатний розчиняти Mg за схемою: 
2ВеSO 4 + Mg + 2H 2 O = H 2 + (BeOH) 2 SO 4 + MgSO 4. 
Під дією кислот MgSO 4 переходить в кислий сульфат: MgSO 4 + H 2 SO 4 = Mg (HSO 4) 2. MgSO 4 набирає при нагріванні в наступні реакції: MgSO 4 + 2С = МgS + 2CO 2; 
2MgSO 4 + C = 2MgO + 2SO 2 + CO 2; MgSO 4 + H 2 S = MgO + SO 2 + S + H 2 O; 
MgSO 4 + SiO 2 = MgSiO 3 + SO 3; 
Термічне розкладання BeSO 4 і MgSO 4 починається відповідно при 580 0 С і 1124 0 С: 2ЕSO 4 = 2ЕО + 2SO 2 + О 2. Константа електролітичної дисоціації MgSO 4 - 5 × 10 -3. У природі MgSO 4 зустрічається у вигляді мінералів: гіркої солі - MgSO 4 × 7H 2 O, кізеріта - MgSO 4 × H 2 O, полігаліта - MgSO 4. К 2 SO 4.2СаSO 4. 2Н 2 О та ін Кізер може служити хорошим 
матеріалом для отримання MgO і SO 2, т.к. при прожарюванні з вугіллям розкладається за схемою: MgSO 4+ C + 64 ккал = CO + SO 2 + MgO. Гірка сіль застосовується в текстильній і паперовій промисловості, а також у медицині. 
З сульфатами деяких одновалентних металів BeSO 4 і MgSO 4 утворюють подвійні солі, для Ве типу M 2 [Be (SO 4) 2]. 2H 2 O, а для магнію так звані шеніти складу M 2 [Mg (SO 4) 2] × 6H 2 O, де M - одновалентних метал. Шенітом K 2 [Mg (SO 4) 2] × 6H 2 O користуються іноді в якості калійного мінерального 
добрива. Нагріванням MgSO 4 з міцною сірчаною кислотою можуть бути отримані сполуки MgSO 4. H 2 SO 4, MgSO 4. 3H 2 SO 4. Діючи аміаком на спиртовий розчин MgSO 4 можуть бути отримані наступні комплекси: [Mg (NH 3) 2 (H 2 O) 4] SO 4, [Mg (NH 3) 3 (H 2 O) 3] SO 4, [Mg ( NH 3) 4 (H 2 O) 2] SO 4. 
Майже нерозчинні у воді нормальні карбонати ВеCO 3 × 4H 2 O MgCO 3 × nH 2 O (n = 5,3) можуть бути отримані тільки при одночасній присутності у розчині великого надлишку CO 2. В іншому випадку осаджуються також майже нерозчинні основні солі. Так, при дії соди на солі Е має місце процес: Е 2 + + 2СO 3 2 - + Н 2 О = СО 2 + (Еон) 2 СО 3 ¯. Основні карбонати Е розчиняються в мінеральних кислотах, в оцтовій кислоті і розчинах солей амонію. Нагрівання такого осаду з кислим карбонатом калію призведе до утворення нормального карбонату: (Еон) 2 СО 3 + 2KHCO 3 = 2ЕСО 3 + 2Н 2 О + К 2 СО 3. MgCO 3 поширений у природі. Біла магнезія - це основна сіль приблизного складу 3MgCO 3 × Mg (OH) 2 × 3H 2 O - використовується в медичних цілях при підвищеній кислотності шлунка. Вона випадає в осад якщо до нагрітого розчину хлориду магнію доливати розчин соди: 
2MgCl 2 + 2Na 2 CO 3 + H 2 O = (MgOH) 2 CO 3 ¯ + CO 2 + 4NaCl. Цікаво відзначити, що спочатку, коли в розчині ще недолік СО 2 і середовище лужне,
 процес йде з утворенням білої магнезії, а коли в розчині з'являється надлишок СО 2 і середовище стає кислою з білої магнезії утворюється гідрокарбонат стійкий в розчині за схемою: 
(MgOH) 2 CO 3 + 3СО 2 + Н 2 О = 2Mg (HCO 3) 2. 
ЕСС 3 отщепляют вуглекислий газ вже при 100 і 500 0 С відповідно для Ве і Mg. На цьому грунтується використання магнезиту для отримання СО 2. При пропущенні СО 2 через суспензію MgCO 3 осад може бути розчинений: MgCO 3 + CO 2 + H 2 O = Mg (HCO 3) 2. ЕСС 3 розчиняються у розчині карбонату амонію за схемою: ЕСС 3 + (NH 4) 2 СО 3 = (NH 4) 2 [Е (СО 3) 2]. При кип'ятінні розчину такої подвійної солі, знову випадає осад: 
(NH 4) 2 [Е (СО 3) 2] = 2NH 3 + CО 2 + ЕСС 3 ¯ + Н 2 О. 
BeCO 3 розчинний також у вуглекислих лугах. До таких подвійним карбонату відноситься природний доломіт - Са [Mg (СО 3) 2]. Застосування знайшов перхлорат магнію ("ангідрон") як відбілювач і осушувач. 
Ацетат берилію виходить тільки при нагріванні ВеСl 2 c безводній оцтовою кислотою. Ця сіль не розчинна у воді і повільно нею розкладається з утворенням основних солей. При 300 о С починає розкладається. Mg (CH 3 COO) 2 розчинний у воді. Оксалат берилію - вага 2 О 4. 3Н 2 О, являє собою порошок білого кольору; розчинний у воді. При 100 о С втрачає 2 молекули Н 2 О. При 220 о С втрачає останню молекулу води і плавиться, а при 350 о С розкладається: вага 2О 4 = СO 2 + СО + BeО. Були отримані комплекси типу Na 2 [Ве (З 2 О 4) 2]. MgС 2 О 4. 3Н 2 О малорастворим у воді. Взаємодіє з розчином оксалату амонію з утворенням розчинної подвійної солі: 
(NH 4) 2 З 2 О 4 + MgС 2 О 4 = (NH 4) 2 [Mg (С 2 О 4) 2]. 
Одно-, дво-, трьох-заміщені ортофосфати берилію і магнію Be (H 2 PO 4) 2. 2H 2 O, BeHPO 4. 3H 2 O, Be 3 (PO 4) 3. 4H 2 O, Mg 3 (PO 4 ) 2. nH 2 O (n = 8,6,4), MgHPO 4. nH 2 O (n = 1,2,7) мало розчинні у воді. Їх можна отримати розчиненням гидроокисей у відповідних кількостях Н 3 РО 4, або обмінними реакціями з х-заміщеними ортофосфату натрію. Наступною реакцією користуються для відкриття катіонів Mg 2 + та аніонів фосфорної, миш'яковистої кислоти: MgCl 2 + NH 4 OH + Na 2 HPO 4 = H 2 O +2 NaCl + MgNH 4 PO 4 ¯. 
Сульфіди Е отримують прямим синтезом з елементів. ВеS являє собою сірувато-білі 
кристали. Він схильний до гідролізу у воді: ВеS + 2H 2 O = Be (OH) 2 + H 2 S. MgS - безбарвні кубічні кристали. Він плавиться вище 2000 о С, у воді схильний гідролізу: 3MgS + 2H 2 O = Mg (HS) 2 + 2MgO + H 2 S. 
Метанід берилію отримують прокаливанием ВеО з вугіллям: 2ВеО + 3С = Ве 2 З + 2СО. Цей червонувато-жовтий порошок 
розкладає воду з виділенням метану: 
Ве 2 З + 4Н 2 О = СН 4 + 2Ве (ОН) 2 ¯. 
Ацетілід берилію отримують прокаливанием тісному суміші Ве з вугіллям. 
розкладає воду з виділенням ацетилену: Вага 2 + 2Н 2 О = С 2 Н 2 + Ве (ОН) 2 ¯. Карбідні з'єднання Mg ендотермічну. MgC 2 отримують діючи на порошок магнію ацетиленом або бензолом при нагріванні: Mg + C 2 H 2 = MgC 2 + H 2. Mg 2C 3 отримують діючи пентаном на порошок магнію. Водою MgC 2 розкладається з виділенням С 2 Н 2, а Mg 2 C 3 c виділенням СН 3-С º СН. Всі карбіди Е реагують з галогенами та сіркою і азотом при нагріванні утворюючи відповідно ЕS, ЕCl 2 і Е 3 N 2. Нітриди Е утворюються при нагріванні порошків Е c азотом або аміаком: 2NH 3 + 3Е = Е 3 N 2 + 3H 2. Be 3 N 2 - білий порошок стійкий на повітрі. Може бути отриманий за схемою: 3Ве + 2KCN = Be 3 N 2 + 2K + 2C. Mg 3 N 2 - аморфний порошок зеленувато-жовтого кольору, флуоресціює оранжевим кольором. Реагує з метанолом і оксидами вуглецю: 
Mg 3 N 2 + 6CH 3 OH = NH 3 + N (CH 3) 3 + 3Mg (OH) OCH 3; 
Mg 3 N 2 + 3CO x = 3MgO + N 2 + 3CO x-1 
Обидва нітриду гідролізується водою і розчиняються в кислотах: 
Е 3 N 2 + Н 2 О = NH 3 + Mg (OH) 2; Е 3 N 2 + 8H + = 2Е 2 + + 2NH 4 +. 
Mg 3 N 2 є відновником. 
Фосфіди Е утворюються при дії парів 
фосфору на порошки відповідних металів. Вони розкладаються водою до гідроокису і фосфіну. Також вони горять виділяючи ЕО, Р 2 О 5 і багато тепла. 
Силіциди відомі лише для магнію (Mg 2 Si і Mg 3 Si 2). Орто-силікат берилію зустрічається в природі у вигляді мінералу фенакіти. Можна одержати при нагріванні BeO та SiO 2 по схемі: 2BeO + SiO 2 = Be 2 SiO 4. Він нерозчинний. Берилій утворює интерметаллические з'єднання: MoBe 12, WBe 12, TaBe 12, UBe 13, PuBe 13 і ін 
Берілліди мають високу міцність і температурою плавлення. Так, NbBe 2 має Т пл 1880 о С, Ta 2 Be 17 - 1980 о С, а ZrBe 13 - 1920 про С. 
Кристалічні структури інтерметалічних сполук, в порівнянні з багатьма системами на підставі інших металів, значно різняться між собою. У першому наближенні всі магніди можна розділити на дві великі групи: 
· Магніди, що мають структури, типові для металів і сплавів; 
· Магніди, що мають структури, типові для іонних або гетерополярность сполук. 
Кордон між цими групами умовна, але, загалом, збільшення атомного номера в періоді супроводжується послідовним переходом від сполук металевого типу до валентним і іонним з'єднанням. 
Існують декілька способів отримання магнідов; найважливішими з них є наступні: 
1. Синтез з компонентів з реакції загального вигляду: xMe + yMg ® Me x Mg y, реакція здійснюється шляхом сплавлення, спіканням (або гарячим 
пресуванням), дистиляцією. Цим методом можна отримувати всі виявлені до цього часу магніди подвійних або багатокомпонентних систем; 
2. Магнійтерміческое відновлення: Me х O y + (y + z) Mg ® Me х Mg z + yMgO. Застосовується у випадках, коли пряме сплавлення не дає належного результату; 
3. Електрохімічний спосіб (електролітичне виділення); 
4. Піроліз, наприклад, за схемою: MgB два 800-960 C ® MgB 4970 C ® MgB 6> 1200 C ® MgB 12. 
Застосування берилію. 
Мала 
щільність, висока Т пл, надзвичайно високий модуль пружності (300 ГПа), унікальна теплоємність (1826 Дж \ (кг. К)) і високі значення електричної провідності і теплопровідності зумовили застосування Ве в різних областях техніки. Берилій споживається атомної промисловістю як відбивач і сповільнювач нейтронів і як конструкційний матеріал. Він широко застосовується в точних приладах: системах наведення і управління, в авіа-і ракетобудуванні. Також Ве застосовують для легування різних сплавів. Берилієві бронзи (сплави Ве з Cu) знайшли застосування для виготовлення контактів, затискачів та ін апаратури. Вони мають гарну електропровідністю і механічними властивостями. Окис берилію знайшла застосування як відбивач і сповільнювач нейтронів, а також для виготовлення оболонок ТВЕЛів і тиглів. 
Застосування магнідов в техніці. 
Практичний інтерес представляють сплави Mg-Zr, оскільки порівняно невелика добавка цирконію істотно зменшує розмір зерна магнію і таким чином поліпшує механічні властивості матеріалу. Такі сплави застосовуються, наприклад, в якості матеріалу для оболонок тепловиділяючих елементів реактора з графітовим сповільнювачем і теплоносієм CO 2. 
Неконструкціонное застосування магнію. 
Магній має більшу спорідненість до кисню. На цій властивості магнію заснована магнійтермія, відкрита Бекетовим як спосіб отримання інших металів витісненням їх магнієм із з'єднань. Вона набула великого значення для сучасної металургії.
 Як приклад можна вказати, що магнійтермія стала основним способом у виробництві таких металів, як берилій і титан. Щодо легка займистість дисперсного магнію і здатність його горіти сліпучим білим полум'ям довгий час використовувалася у фотографії. Магнієвий порошок стали застосовувати також як висококалорійне пального в сучасній ракетній техніці. Введення невеликої кількості металевого магнію в чавун дозволило значно поліпшити його механічні (зокрема, пластичні) властивості. 
Глибоке 
очищення магнію від домішок, досягнута останнім часом, дозволила використовувати його в якості одного з компонентів при синтезі напівпровідникових сполук. 
Конструкційне застосування магнію. 
Основна 
перевага металевого магнію - його легкість (магній - найлегший з конструкційних металів). Технічно чистий магній має невисоку механічну міцність, проте введення в нього в невеликій кількості інших елементів (алюмінію, цинку, марганцю) може значно поліпшити його механічні властивості майже без збільшення питомої ваги. На основі цих властивостей магнію був створений сплав "електрон", що містить, крім магнію, 6% алюмінію, 1% цинку і 0,5% марганцю. (В даний час під технічною назвою "електрон" розуміються взагалі все сплави, в яких магній є головною складовою частиною). Щільність цього сплаву - 1,8 г / см 3; міцність на розрив - до 32 кг / мм 2; твердість по Бринеллю - 40-55 кг / мм 2. Цей, а також багато інших сплави на основі магнію широко застосовуються в авіа-і автобудуванні. Основний недолік магнію - низька корозійна стійкість. Магній порівняно стійкий у сухому атмосферному повітрі, у дистильованій воді, але швидко руйнується в повітрі, насиченому водними парами і забрудненому домішками, особливо сірчистим газом. 

  

Категорія: Хімія | Додав: Natar (07.05.2017)
Переглядів: 729 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]
Форма входу
Пошук
Block title
Block title

Copyright MyCorp © 2024