Referat-info
Меню сайту
Категорії розділу
Хімія [91]
Block title
Block title
Block title
Головна » Статті » Хімія » Хімія

Лужноземельні метали (2 частина)

Частина третя. Лужноземельні метали. 
Кальцій, стронцій, барій і радій носять назву лужноземельних металів. Названі вони так, тому що їх окису надають воді лужну середу. 
Історія лужноземельних металів. 
  Вапняк, 
мармур і гіпс вже у давнину (5000 років тому) застосовувалися єгиптянами в будівельній справі. Аж до кінця 18 століття хіміки вважали вапно простою речовиною. У 1746 р. І. Потт отримав і описав досить чистий окис кальцію. У 1789 році Лавуазье передбачив, що вапно, магнезія, барит - речовини складні. Ще задовго до відкриття стронцію і барію їх "нерозшифровані" з'єднання застосовували в піротехніку для отримання відповідно червоних і зелених вогнів. До середини 40-х років минулого століття стронцій був насамперед металом "потішних вогнів". У 1787 р. в свинцевому руднику поблизу шотландського села Стронціан був знайдений новий мінерал, який назвали стронціанітом SrCO 3. А. Крофорд припустив існування ще невідомої «землі». У 1792 р. Т. Хоп довів що до складу знайденого мінералу входить новий елемент - стронцій. У той час що з допомогою Sr (OH) 2 виділяли нерозчинний дісахарат стронцію (С 12 Н 22 О 4. 2SrO), при отримання цукру з меляси. Видобуток Sr зростала. Однак скоро було відмічено, що аналогічний сахарат кальцію теж не розчинний, а окис кальцію була безсумнівно дешевше. Інтерес до стронцію відразу ж зник і знову зріс до нього лише в 40-х роках минулого століття. Важкий шпат був першим відомим з'єднанням барію. Його відкрив на початку XVII ст. італійський алхімік Касціароло. Він же встановив, що цей мінерал після сильного нагрівання з вугіллям світиться в темряві червоним світлом і дав йому назву «lapis solaris» (сонячний камінь). У 1808 році Деві, піддаючи електролізу з ртутним катодом суміш вологою гашеного вапна з окисом ртуті, приготував амальгаму кальцію, а відігнавши з неї ртуть, отримав метал, названий «кальцій» (від лат. Calх, рід. Відмінок calcis - вапно). Тим же способом Деві були отримані Ва і Sr. Промисловий спосіб отримання кальцій розроблений Зутером і Редліхом в 1896 р. на заводі Ратенау (Німеччина). У 1904 р. почав працювати перший завод з отримання кальцію. 
Радій був передбачений 
Менделєєвим в 1871 р. і відкритий у 1898 р. подружжям Марією та П'єром Кюрі. Вони виявили, що уранові руди мають більшу радіоактивністю ніж сам уран. Причиною були сполуки радію. Залишки уранової руди вони обробляли лугом, а що не розчинялося - соляною кислотою. Залишок після другої процедури володіли більшою радіоактивністю, ніж руда. У цій фракції і був виявлений радій. Про своє відкриття подружжя Кюрі повідомили в доповіді за 1898 
Поширеність лужноземельних металів. 
Вміст кальцію в літосфері складає 2,96% від загальної маси земної кори, стронцію-0,034%, барію-0,065%, радію-1. 10 -10%. У природі кальцій складається з ізотопів з масовими числами 40 (96,97%), 42 (0,64%), 43 (0,14%), 44 (2,06%), 46 (0,003%), 48 (0 , 19%); стронцій-84 (0,56%), 86 (9,86%), 87 (7,02%), 88 (82,56%); барій-130 (0,1%), 132 (0,1%), 134 (2,42%), 135 (6,59%), 136 (7,81), 137 (11, 32%), 138 (71,66). Радій радіоактивний. Найбільш стійкий природний ізотоп-226 Ra. Основні мінерали лужноземельних елементів-вугле-і сірчанокислі солі: СаСО 3 - кальцит, СаSO 4 - андідріт, SrCO 3 - стронціаніт, SrSO 4 - целестин, BaCO 3 - вітерит. BaSO 4 - важкий шпат. Флюорит СаF 2 - теж корисний мінерал. 
Са грає важливу роль у 
процесах життєдіяльності. Людський організм містить 0,7-1,4 вагу.% Кальцію, 99% якого припадає на кісткову і зубну тканину. Рослини теж містять великі кількості кальцію. Сполуки кальцію містяться в природних водах і грунті. Барій, стронцій і радій містяться в людському організмі в незначних кількостях. 
Отримання лужноземельних металів. 
Спочатку одержують оксиду або хлориди Е. ЕО отримують прокаливанием ЕСС 3, а ЕС1 2 дією соляної кислоти на ЕСС 3. Всі лужноземельні метали можна отримати алюмотерміческім відновленням їх оксидів при температурі 1200 о С за приблизною схемою: 3ЕО + 2Al = Al 2 O 3 + 3Е. Процес при цьому ведуть у вакуумі в уникненні окислення Е. Кальцій (як і всі інші Е) можна отримати 
електролізом розплаву СаСl 2 з наступною перегонкою у вакуумі або термічною дисоціацією Сас 2. Ва і Sr можна отримати піролізом Е 2 N 3, Е (NH 3) 6, ЕН 2. Радій видобувають попутно з уранових руд. 
Особливості лужноземельних металів. 
Кальцій має атомний номер 20 і атомна вага 40,08. Стронцій - 38 і 87,62. Барій - 56 і 137,33. Радій 88 і 226,02. Е характеризуються найбільшою подібністю між собою, тому що для них 
характерна не тільки групова і типова аналогія, але і шарова. В основному стані Е нульвалентни і мають структуру ns 2. збудження до двовалентного стану може йти за схемами: ns 2 ® nsnp або ns 2 ® ns (n-1) d. 

 У цілому від Са до Ва трохи зростає хімічна активність лужноземельних металів (властивості радію вивчені не кращим чином, зважаючи на малу поширеність і радіоактивності). У багатьох відносинах Е нагадують лужні метали. І ті й інші - хімічно активні, не проявляють комплексообразовательной здібності. Їх гідроокису - сильні підстави, а гідриди - солеобразние речовини. 
Фізичні властивості лужноземельних металів. 
Са і його аналоги являють собою сріблясто-білі метали.
 Кальцій з них самий твердий. Стронцій і особливо барій значно м'якше кальцію. Всі лужноземельні метали пластичні, добре піддаються куванні, різання та прокатки. Кальцій при звичайних умовах кристалізується в ГЦК-структурою з періодом а = 0,556 нм (КЧ = 12), а при температурі вище 464 о С в ОЦК-стуктуре. Са утворює сплави з Li, Mg, Pb, Cu, Cd, Al, Ag, Hg. Стронцій має ГЦК - структуру; при температурі 488 о С стронцій зазнає поліморфний перетворення і кристалізується в гексагональній структурі. Він парамагнітен. Барій кристалізується в ОЦК структурі. Са і Sr здатні утворювати між собою безперервний ряд твердих розчинів, а в системах Са-Ва і Sr-Ba з'являються області розшаровування. У рідкому стані стронцій змішується з Ве, Hg, Ga, In, Sb, Bi, Tl, Al, Mg, Zn, Sn, Pb. З останніми чотирма Sr утворює інтерметаліди. Електропровідність лужноземельних металів з підвищенням тиску падає, всупереч зворотному процесу у решти типових металів.

Хімічні властивості лужноземельних металів та їх сполук. 
Свіжа поверхню Е швидко темніє внаслідок утворення оксидної плівки. Плівка ця відносно щільна - з плином часу весь метал повільно окислюється. Плівка складається з ЕО, а також ЕО 2 і Е 3 N 2. Нормальні електродні потенціали реакцій Е-2е = Е 2 + рівні j =- 2,84 В (Са), j =- 2,89 (Sr). Е дуже активні елементи: розчиняються у воді і кислотах, витісняють більшість металів з їх оксидів, галогенідів, сульфідів. Первинно (200-300 о С) кальцій взаємодіє з водяною парою за схемою: 2Са + Н 2 О = СаО + Сан 2. Вторинні реакції мають вигляд: Cан 2 + 2Н 2 О = Са (ОН) 2 + 2Н 2 і СаО + Н 2 О = Са (ОН) 2. У міцної сірчаної кислоти Е майже не розчиняються зважаючи на утворення плівки нерозчинні ЕSO 4. З розведеними мінеральними кислотами Е реагують бурхливо з виділенням водню. Кальцій при нагріванні вище 800 о С з метаном реагує за схемою: 3Cа + СН 4 = Сан 2 + Сас 2. Е при нагріванні реагують з воднем, з сіркою і з газоподібним аміаком. За хімічними властивостями радій ближче всього до Ва, але він більш активний. При кімнатній температурі він помітно з'єднується з киснем і азотом повітря. Загалом, його хімічні властивості трохи більш виражені ніж у його аналогів. Всі з'єднання радію повільно розкладаються під дією власного випромінювання, набуваючи при цьому жовто-ватую або коричневого забарвлення. З'єднання радію мають властивість автолюмінесценціі. У результаті радіоактивного розпаду 1 г Ra кожну годину виділяє 553,7 Дж тепла. Тому температура радію і його сполук завжди вище температури навколишнього середовища на 1,5 град. Також відомо, що 1 г радію на добу виділяє 1 мм 3 радону (226 Ra = 222 Rn + 4 He), на чому грунтується його застосування як джерела радону для радонових ванн. 
Гідриди Е - білі, кристалічні солеобразние речовини. Їх отримують безпосередньо з елементів при нагріванні. Температури початку реакції Е + Н 2 = ЕН 2рівні 250 о С (Са), 200 о С (Sr), 150 о С (Ва). Термічна дисоціація ЕН 2 починається при 600 о С. В атмосфері водню Сан 2 не розкладається при температурі плавлення (816 о С). У відсутності вологи гідриди лужноземельних металів стійкі на повітрі при звичайній температурі. Вони не реагують з галогенами. Однак при нагріванні хімічна активність ЕН 2 зростає. Вони здатні відновлювати оксиди до металів (W, Nb, Ti, Се, Zr, Ta), наприклад 2СаН 2 + ТiO 2 = 2CaO + 2H 2 + Ti. Реакція Сан 2 з Al 2 O 3 йде при 750 о С: 3СаН 2 + Al 2 O 3 = 3СаО + 3Н 2 + 2Аl, і потім: Сан 2 + 2Al = CaAl 2 + H 2. З азотом Сан 2 при 600 о С реагує за схемою: 3СаН 2 + N 2 = Ca 3 N 2 +3 H 2. При підпалюванні ЕН 2 вони повільно згорають: ЕН 2 + О 2 = Н 2 О + СаО. У суміші з твердими окислювачами вибухонебезпечні. При дії води на ЕН 2 виділяється гідроокис і водень. Ця реакція сильно екзотермічну: змочений водою на повітрі ЕН 2 самозаймається. З кислотами ЕН 2 реагує, наприклад за схемою: 2HCl + CaH 2 = CaCl 2 + 2H 2. ЕН 2 застосовують для отримання чистого водню, а також для визначення слідів води в органічних розчинниках. Нітриди Е являють собою безбарвні тугоплавкі речовини. Вони виходять безпосередньо з елементів при підвищеній температурі. Водою вони розкладаються за схемою: Е 3 N 2 + 6H 2 O = 3Е (ОН) 2 + 2NH 3. Е 3 N 2 реагують при нагріванні з СО за схемою: Е 3 N 2 + 3СО = 3ЕО + N 2 + 3C. 
Процеси що відбуваються при нагріванні Е 3 N 2 з вугіллям виглядають так: 
Е 3 N 2 + 5С = ЕCN 2 + 2ЕС 2; (Е = Са, Sr); Ва 3 N 2 + 6С = Ва (СN) 2 + 2ВаC 2; 
Нітрид стронцію реагує з HCl, даючи хлориди Sr і амонію. Фосфіди Е 3 Р 2 утворюються безпосередньо з елементів або прожарюванням тризаміщені фосфатів з вугіллям: 
Cа 3 (РО 4) 2 + 4С = Са 3 Р 2 + 4СО 
Вони гідролізуються водою за схемою: Е 3 Р 2 + 6Н 2 О = 2РН 3 + 3Е (ОН) 2. З кислотами фосфіди лужноземельних металів дають 
відповідну сіль і фосфін. На цьому грунтується їх застосування для отримання фосфіну в лабораторії. 
Комплексні аміакати складу Е (NН 3) 6 - тверді речовини з металевим блиском і високою електропровідністю. Їх отримують дією рідкого аміаку на Е. На повітрі вони самовоспламеняются. Без доступу повітря вони розкладаються на 
відповідні аміди: Е (NH 3) 6 = Е (NH 2) 2 + 4NH 3 + Н 2. При нагріванні вони енергійно розкладаються за цією ж схемою. 
Карбіди лужноземельних металів які виходять прокаливанием Е з вугіллям розкладаються водою з виділенням ацетилену: ЕС 2 + 2Н 2 О = Е (ОН) 2 + С 2 Н 2.Реакція з вас 2 йде настільки бурхливо, що він запалюється в контакті з водою. Теплоти освіти ЕС 2 з елементів для Са і Ва рівні 14 і 12 ккал \ моль. При нагріванні з азотом ЕС 2 дають СаСN 2, Ba (CN) 2, SrCN 2. Відомі силіциди (ЕSi і ЕSi 2). Їх можна одержати при нагріванні безпосередньо з елеменов. Вони гідролізуються водою і реагують з кислотами, даючи H 2 Si 2 O 5, SiH 4, 
відповідне з'єднання Е і водень. Відомі бориди ЕВ 6 одержувані з елементів при нагріванні. 
Оксиду кальцію та його аналогів - білі тугоплавкі (T кіп СаО = 2850 о С) речовини, енергійно поглинають воду. На цьому грунтується застосування ВаО для отримання абсолютного спирту. Вони бурхливо реагують з водою, виділяючи багато тепла (крім SrO розчинення якої ендотермічну). ЕО розчиняються в кислотах і хлориді амонію: ЕО + 2NH 4 Cl = SrCl 2 + 2NH 3 + H 2 O. Отримують ЕО прокаливанием карбонатів, нітратів, перекисів або гідроксидів відповідних металів. Ефективні заряди барію і кисню в ВаО рівні ± 0,86. SrO при 700 о С реагує з ціаністим калієм: 
KCN + SrO = Sr + KCNO. 
Окис стронцію розчиняється в 
метанолі з утворенням Sr (ОСН 3) 2. При магнійтерміческом відновленні ВаО може бути отриманий проміжний окисел Ва 2 О, який нестійкий і диспропорционирует. 
Гідроокису лужноземельних металів - білі розчинні у воді речовини. Вони є сильними основами. У ряді Са-Sr-Ba основний 
характер і розчинність гидроокисей збільшуються. РПР (Са (ОН) 2) = 5,26, РПР (Sr (ОН) 2) = 3,5, РПР (Bа (ОН) 2) = 2,3. З розчинів гидроокисей звичайно виділяються Ва (ОН) 2. 8Н 2 О, Sr (ОН) 2.8Н 2 О, Cа (ОН) 2. Н 2 О. ЕО приєднують воду з утворенням гідроксидів. На цьому грунтується використання СаО в будівництві. Тісна суміш Са (ОН) 2 та NaOH у ваговому співвідношенні 2:1 носить назву натронна вапно, і широко використовується як поглинач СО 2. Са (ОН) 2 при стоянні на повітрі поглинає СО 2 за схемою: Ca (OH) 2 + CO 2 = CaCO 3 + Н 2 О. Близько 400 о С Са (ОН) 2 реагує з чадним газом: СО + Ca (OH) 2 = СаСО 3 + Н 2. Баритові вода реагує з СS 2при 100 о С: СS 2 + 2Ва (ОН) 2 = ВАЛТ 3 + Ва (НS) 2 + Н 2 О. Алюміній реагує з баритової водою: 2Al + Ba (OH) 2 + 10H 2 O = Ba [Al (OH) 4 (H 2 O) 2] 2 + 3H 2.Е (ОН) 2 використовуються для відкриття вугільного ангідриду. 
Е утворюють перекису білого кольору. Вони істотно менш стабільні на відміну від окисів і є сильними окислювачами. Практичне значення має найбільш стійка ВаО 2, яка являє собою білий, парамагнітний порошок з щільністю 4,96 г1см 3 і т. пл. 450 °. BaО 2 стійка при звичайній температурі (може зберігатися роками), погано розчиняється у воді, спирті і ефірі, розчиняється в розбавлених кислотах з виділенням солі і перекису водню. Термічне розкладання перекису барію прискорюють окисли, Cr 2 O 3, Fe 2 O 3 та CuО. Перекис барію реагує при нагріванні з воднем, сіркою, 
вуглецем, аміаком, солями амонію, феррицианида калію і т. д. З концентрованою соляною кислотою перекис барію реагує, виділяючи хлор: ВаO 2 + 4НСl = BaCl 2 + Cl 2 + 2H 2 O. Вона окисляє воду до перекису водню: Н 2 О + ВаО 2 = Ва (ОН) 2 + Н 2 О 2. Ця реакція оборотна й у присутності навіть вугільної кислоти рівновагу зміщений вправо. ВаО 2 використовується як вихідний продукт для отримання Н 2 О 2, а також як окислювач в піротехнічних складах. Однак, ВаО 2 може виступати і як відновника: HgCl 2 + ВаО 2 = Hg + BaCl 2 + O 2. Отримують ВаО 2 нагріванням ВаО в струмі повітря до 500 о С за схемою: 2ВаО + О 2 = 2ВаО 2. При підвищенні температури має місце зворотний процес. Тому при горінні Ва виділяється тільки окис. SrO 2 і СаО 2 менш стійкі. Спільним методом отримання ЕО 2 є взаємодія Е (ОН) 2 з Н 2 О 2,при цьому виділяються ЕО 2. 8Н 2 О. Термічний розпад ЕО 2 починається при 380 о С (Са), 480 о С (Sr), 790 о С (Ва). При нагріванні ЕО 2 з концентрованої перекисом водню можуть бути отримані жовті нестійкі речовини - надпероксід ЕО 4. 
Солі Е як правило безбарвні. Хлориди, броміди, йодиди і нітрати добре розчиняються у воді. Фториди, сульфати, карбонати і фосфати погано розчиняються. Іон Ва 2 + - токсичний. Галіди Е діляться на дві групи: фториди і всі інші. Фториди майже не розчиняються у воді і кислотах, і не утворюють кристалогідратів. Навпаки хлориди, броміди, йодиди і добре розчиняються у воді і виділяються з розчинів у вигляді кристалогідратів. 

При отриманні шляхом обмінного розкладу в розчині фториди виділяються у вигляді об'ємистих слизових опадів, досить легко утворюють колоїдні розчини. ЕГ 2 можна отримати діючи відповідними галогенами на відповідні Е. Розплави ЕГ 2 здатні розчиняти до 30% Е. При вивченні електропровідності розплавів хлоридів елементів другої групи головної підгрупи було встановлено, що їх молекулярно-іонний склад дуже різний. Ступеня дисоціації за схемою ЕСl 2 = Е 2 + + 2Cl - рівні: BeCl 2 - 0,009%, MgCl 2 - 14,6%, CaCl 2 - 43,3%, SrCl 2 - 60,6%, BaCl 2 - 80, 2%. Галогеніди (крім фторидів) Е містять кристалізаційну воду: CaCl 2. 6Н 2 О, SrCl 2. 6Н 2 О і ВаCl 2. 2Н 2 О. Рентгеноструктуровим аналізом встановлено будову Е [(ОН 2) 6] Г 2 для кристалогідратів Са і Sr. При повільному нагріванні кристалогідратів ЕГ 2 можна отримати безводні солі. CaCl 2 легко утворює пересичені розчини. Природний СаF 2 (флюорит) застосовують в керамічній промисловості, а також він використовується для виробництва HF і є мінералом фтору. Безводний CaCl 2 використовують як осушувач зважаючи на його гидроскопичности. Кристалогідрат хлористого кальцію використовують для приготування холодильних сумішей. ВаСl 2 - використовують у с \ г і для відкриття SO 4 2 - (Ва 2 + + SO 4 2 - = ВаSO 4 ¯). Сплавом ЕГ 2 і ЕН 2 можуть бути отримані гідрогаліди: ЕГ 2 + ЕН 2 = 2ЕНГ. Ці речовини плавляться без розкладання але гідролізуються водою: 2ЕНГ + 2H 2 O = ЕГ 2 + 2Н 2 + Е (ОН) 2. Розчинність у воді хлоратів, броматом і иодат у воді зменшується по рядах Сa - Sr - Ba і Cl - Br - I. Ba (ClO 3) 2 - використовується в піротехніці. Перхлорати Е добре розчинні не лише у воді але і в органічних розчинниках. Найбільш важливим з Е (ClO 4) 2 є Ва (ClO 4) 2. 3Н 2 О. Безводний перхлорат барію є гарним осушувачем. Його термічний розпад починається тільки при 400 о С. Гіпохлорит кальцію Са (СlO) 2. NH 2 O (n = 2,3,4) отримують дією хлору на вапняне молоко. Він є окислювачем і добре розчинний у воді. Хлорну вапно можна отримати діючи хлором на тверду гашене вапно. Вона розкладається водою і пахне хлором у присутності вологи. Реагує з СО 2 повітря: 
СО 2 + 2CaOCl 2 = CаСO 3 + CaCl 2 + Cl 2 O. 
Хлорне вапно застосовується як окислювач, відбілювач і як дезінфікуючий засіб. 
Для лужноземельних металів відомі азиди Е (N 3) 2 і роданіди Е (CNS) 2. 3Н 2 О. Азиди в порівнянні з азидом свинцю набагато менш вибухонебезпечні. Роданиду при нагріванні легко втрачають воду. Вони добре розчиняються у воді і органічних розчинниках. Ва (N 3) 2 і Ba (CNS) 2 можуть бути використані для отримання азидів і роданидов інших металів з ​​сульфатів обмінної реакцією. 
Нітрати кальцію та стронцію існують зазвичай у вигляді кристалогідратів Са (NO 3) 2. 4H 2 O і Sr (NO 3) 2. 4H 2 O. Для нітрату барію не властиво 
освіта кристалогідрату. При нагріванні Са (NO 3) 2. 4H 2 O і Sr (NO 3) 2. 4H 2 O легко втрачаю воду. У інертній атмосфері нітрати Е термічно стійкі до 455 o C (Са), 480 o C (Sr), 495 o C (Ba). Розплав кристалогідрату нітрату кальцію має кисле середовище при 75 о С. Особливістю нітрату барію є мала швидкість розчинення його кристалів у воді. Схильність до комплексоутворення виявляє лише нітрат барію, для якого відомий нестійкий комплекс K 2 [Ba (NO 3) 4]. Нітрат кальцію розчинний у спиртах, Метилацетат, ацетоні. Нітрати стронцію і барію там же майже не розчиняються. Температури плавлення нітратів Е оцінюються в 600 оС, однак при цій же температурі починається розпад: Е (NO 3) 2 = Е (NO 2) 2 + O 2. Подальший розпад йде при більш високій температурі: Е (NO 2) 2 = ЕО + NO 2 + NO. Нітрати Е вже здавна використовувалися в піротехніку. Легколетучие солі Е забарвлюють полум'я у відповідні кольори: Са - в оранжево-жовтий, Sr - в червоно-карміновим, Ba - в жовто-зелений. Розберемося по суті цього на прикладі Sr: у Sr 2 + є дві ВАО: 5s і 5p або 5s і 4d. Повідомимо енергію цій системі - нагріємо. Електрони з більш прилеглих до ядра орбіталей перейдуть на ці ВАО. Але така система не стійка і виділить енергію в вигляді кванта світла. Якраз Sr 2 + і випромінює кванти з частотою, що відповідає довжинам червоних хвиль. При отриманні піротехнічних складів зручно використовувати селітру, тому що вона не тільки забарвлює полум'я, але і є окислювачем, виділяючи кисень при нагріванні. Піротехнічні склади складаються з твердого окислювача, твердого відновлювача і деяких органічних речовин, знебарвлюючих полум'я відновника, і є зв'язуючою агентом. Нітрат кальцію використовується як добриво.
Всі фосфати і гідрофосфату Е погано розчиняються у воді. Їх можна отримати розчиненням 
відповідної кількості СаО або СаСO 3 в ортофосфорної кілоте. Також вони осідають при обмінних реакціях типу: (3-х) Са 2 + + 2H x PO 4 - (3-х) = Са (3-х) (H x PO 4) 2 ¯.   Практичне значення (як добриво) має однозаміщений ортофосфат кальцію, який поряд з Са (SO 4) входить до складу суперфосфату. Його отримують за схемою: 
Cа 3 (PO 4) 2 + 2H 2 SO 4 = Ca (H 2 PO 4) 2 + 2CаSO 4 
Оксалати теж мало розчиняються у воді. Практичне значення має оксалат кальцію, який при 200 о С зневоднюється, а при 430 о С розкладається за схемою: Сас 2 О 4 = СаСО 3 + СО. Ацетат Е виділяються у вигляді кристалогідратів, і добре розчиняються у воді. 
З Ульфат Е - білі, погано розчинні у воді речовини. Розчинність СaSO 4. 2Н 2 О на 1000 р. води при звичайній температурі становить 8. 10 -3 моль, SrSO 4 - 5.10 -4 моль, ВаSO 4 - 1. 10 -5 моль, RaSO 4 - 6. 10 -6 моль. У ряді Са - Ra розчинність сульфатів швидко зменшується. Ва 2 + є реактивом на сульфат-іон. Сульфат кальцію містить кристалізаційну воду. Вище 66 о С з розчину виділяється безводний сульфат кальцію, нижче - гіпс СаSO 4. 2Н 2 О. Нагрівання гіпсу вище 170 о С супроводжується виділенням гідратної води. При замішуванні гіпсу з водою ця 
маса швидко твердне внаслідок утворення кристал-логідрата. Це властивість гіпсу використовується в будівництві. Єгиптяни використовували це знання ще 2000 років тому. Розчинність ЕSO 4 в міцної сірчаної кислоти набагато вище, ніж у воді (ВаSO 4 до 10%), що свідчить про комплексоутворенні. Відповідні комплекси ЕSO 4. Н 2 SO 4 можуть бути отримані у вільному стані. Подвійні солі з сульфатами лужних металів і амонію відомі тільки для Са і Sr. (NH 4) 2 [Ca (SO 4) 2] розчинний у воді і використовується в аналітичній хімії для відділення Са від Sr, тому що (NH 4) 2 [Sr (SO 4) 2] мало розчинний. Гіпс застосовують для комбінованого отримання сірчаної кислоти і цементу, тому що при нагріванні з відновником (вугіллям) гіпс розкладається: СаSO 4 + З = СаО + SO 2 + СО. При більш високій температурі (900 o C) сірка ще більше відновлюється за схемою: СаSO 4 + 3С = САS + CO 2 + 2СО. Подібний розпад сульфатів Sr і Ва починається при більш високих температурах. ВаSO 4нетоксичний і використовується в медицині та виробництві мінеральних фарб. 
Сульфіди Е являють собою білі тверді речовини, що кристалізуються за типом NaCl. Теплоти їх утворення та енергії кристалічних граток рівні (ккал \ моль): 110 і 722 (Са), 108 і 687 (Sr), 106 і 656 (Ва). Можуть бути отримані синтезом з елементів при нагріванні або прожарюванням сульфатів з вугіллям: ЕSO 4 + 3С = ЕS + CO 2 + 2СО. Менш всіх розчинний САS (0,2 г \ л). ЕS вступає в наступні реакції при нагріванні: 
ЕS + H 2 O = ЕO + H 2 S; ЕS + Г 2 = S + ЕГ 2; ЕS + 2O 2 = ЕSO 4; ЕS + xS = ЕS x +1 (x = 2,3). 
Сульфіди лужноземельних металів в нейтральному розчині без остачі гідроліз за схемою: 2ЕS + 2Н 2 О = Е (НS) 2 + Е (ОН) 2. Кислі сульфіди можуть бути отримані і у вільному стані упариванием розчину сульфідів. Вони вступають в реакції з сіркою: 
Е (НS) 2 + ХS = ЕS x +1 + H 2 S (x = 2,3,4). 
З кристалогідратів відомі ВА. 6H 2 O і Са (HS) 2. 6Н 2 О, Ва (HS) 2. 4Н 2 О. Са (HS) 2 застосовують для видалення волосся. ЕS схильні явищу фосфоресценції. Відомі полісульфіди Е: ЕS 2, ЕS 3, ЕS 4, ЕS 5. Вони виходять при кип'ятінні 
суспензії ЕS у воді з сіркою. На повітрі ЕS окислюються: 2ЕS + 3О 2 = 2ЕSО 3.Пропусканням повітря через суспензію САS можна отримати тіосульфат Са за схемою: 2СаS + 2О 2 + Н 2 О = Са (ОН) 2 + САS 2 О 3. Він добре розчинний у воді. У ряді Са - Sr - Ва розчинність тіосульфатів падає. Теллуріди Е мало розчиняються у воді і теж схильні до гідролізу, але в меншій мірі ніж сульфіди. 
Розчинність хроматів Е в ряду Са - Ва падає також різко, як і у випадку з сульфатами. Ці речовини жовтого кольору виходять при взаємодії розчинних солей Е з хромату (або дихроматом) лужних металів: Е 2 + + СrO 4 2 - = ЕCrO4 ¯. Хромат кальцію виділяється у вигляді кристалогідрату - СаCrO 4. 2H 2 O (РПР СаCrO 4= 3,15). Ще до температури плавлення він втрачає воду. SrCrO 4 і ВаCrO 4 кристалогідратів не утворюють. Pпр SrCrO 4 = 4,44, РПР ВаCrO 4 = 9,93. 
Карбонати Е білі, погано розчинні у воді речовини. При нагріванні ЕСС ​​3 переходять в ЕО, отщепляя СО 2. У ряді Са - Ва термічна стійкість карбонатів зростає. Найбільш практично важливий з них карбонат 
кальцію (вапняк). Він безпосередньо використовується в будівництві, а також служить сировиною для отримання вапна та цементу. Щорічна світовий видобуток вапна з вапняку обчислюється десятками мільйонів тонн. Термічна дисоціація СаСО 3ендотермічну: СаСО 3 = СаО + СО 2 і вимагає витрати 43 ккал на моль вапняку. Випал СаСО 3 проводять в шахтних печах. Побічним продуктом випалення є цінний вуглекислий газ. СаО важливий будівельний матеріал. При замішуванні з водою відбувається кристалізація за рахунок утворення гідроокису, а потім карбонату за схемами: 
СаО + Н 2 О = Са (ОН) 2 і Са (ОН) 2 + СО 2 = СаСО 3 + Н 2 О. 
Колосально важливу практичну роль відіграє цемент - зеленувато-сірий порошок, що складається із суміші різних 
силікатів і алюмінатів кальцію. Будучи замішаний з водою він твердне за рахунок гідратації. При його виробництві суміш СаСО 3 з глиною обпалюють до початку спікання (1400-1500 о С). Потім суміш перемелюють. Склад цементу можна висловити процентним співвідношенням компонентів СаО, SiO 2, Al 2 O 3, Fe 2 O 3, причому СаО представляє підставу, а все інше - ангідриди кислот. Склад силікатної (портладского) цементу складається в основному з Са 3 SiO 5, Ca 2 SiO 4, Ca 3 (AlO 3) 2 і Ca (FeO 2) 2.Його схоплювання проходить за схемами: 
Са 3 SiO 5 + 3Н 2 О = Ca 2 SiO 4. 2Н 2 О + Са (ОН) 2 
Ca 2 SiO 4 + 2Н 2 О = Ca 2 SiO 4. 2Н 2 О 
Ca 3 (AlO 3) 2 + 6Н 2 О = Ca 3 (AlO 3) 2. 6Н 2 О 
Ca (FeO 2) 2 + nH 2 O = Ca (FeO 2) 2. NH 2 O. 
Природний крейда вводять до складу різних замазок. Дрібнокристалічний, обкладена з розчину СаСО 3 входить до складу зубних порошків. З ВАЛТ 3прокаливанием з вугіллям отримують ВаО за схемою: ВАЛТ 3 + С = ВаО + 2СО. Якщо процес вести при більш високій температурі в струмі азоту утворюється ціанід барію: ВАЛТ 3 + 4С + N 2 = 3CO + Ba (CN) 2. Ва (СN) 2 добре розчинний у воді. Ва (СN) 2 може використаний для виробництва ціанідів інших металів шляхом обмінного розкладання з сульфатами. Гідрокарбонати Е розчиняються у воді і можуть бути отримані лише в розчині наприклад, пропусканням вуглекислого газу в суспензію СаСО 3 у воді: СО 2 + СаСО 3 + Н 2 О = Са (НСО 3) 2. Ця реакція оборотна й при нагріванні зміщується вліво. Наявність гідрокарбонатів кальцію і магнію в природних водах обумовлює жорсткість води.       
  
Жорсткість води та способи її усунення. 
Розчинні солі кальцію і магнію обумовлюють загальну жорсткість води. Якщо вони присутні у воді в невеликих кількостях, то вода називається м'якою. При великому змісті цих солей (100 - 200 мг солей кальцію - в 1 л. В перерахунку на іони) вода вважається жорсткої. У такій воді мило погано піниться, так як солі кальцію і магнію утворюють з ним нерозчинні з'єднання. У жорсткій воді погано розварюються харчові продукти, і при кип'ятінні вона дає на стінках побутового начиння і парових котлів накип. Накип має малу теплопровідність, викликає збільшення витрати палива або споживаної потужності 
електроприладу і прискорює зношування стінок посудини для кип'ятіння води. При нагріванні кислі карбонати кальцію і магнію розкладаються і переходять у нерозчинні основні карбонати: Са (НСО 3) = Н 2 О + СО 2 + СаСО 3 ↓ Розчинність сульфату кальцію СаSO 4 при нагріванні також знижується, тому він входить до складу накипу. Жорсткість, викликана присутністю у воді кислих карбонатів кальцію і магнію, називається карбонатної або тимчасовою, оскільки вона може бути усунена. Крім карбонатної жорсткості, розрізняють ще некарбонатну жорсткість, яка залежить від вмісту у воді ЕСl 2 і ЕSO 4, де Е - Са, Мg. Ці солі не видаляються при кип'ятінні, і тому некарбонатну жорсткість називають також постійною жорсткістю. Карбонатна і некарбонатних жорсткість у сумі дають загальну твердість. Для повного її усунення воду іноді переганяють. Але це дорого. Для усунення карбонатної жорсткості воду можна прокип'ятити, але це теж дорого і утворюється накип. Жорсткість видаляють додаванням відповідної кількості Са (ОН) 2: Са (ОН) 2 + Са (НСО 3) 2 = СаСО 3 ↓ + 2Н 2 О. Загальну жорсткість усувають або додаванням Na 2 CO 3, або за допомогою так званих катіонітів. При використанні вуглекислого натрію розчинні солі кальцію і магнію теж переводять у нерозчинні карбонати: Са 2 + + Na 2 CO 3 = 2Na + + CaCO 3 ↓. Усунення жорсткості за допомогою катіонітів - процес більш досконалий. Катіоніти - високомолекулярні натрійсодержащіе органічні сполуки, склад яких можна виразити формулою Na 2 R, де R - складний кислотний залишок. При фільтруванні води через шар катіоніту відбувається обмін катіонів Na + кристалічної решітки на катіони Са 2 + і Mg 2 + з розчину за схемою: Са 2 + + Na 2 R = 2Na + + CaR. Отже, іони Са з розчину переходять в катионит, а іони Na + переходять з катіоніту в розчин. Для відновлення використаного катіоніту його промивають концентрованим розчином кухонної солі. При цьому відбувається зворотний процес: іони Са 2 + в кристалічній решітці в катіоніту замінюються на іони Na + з розчину. Регенерований катионит знову застосовують для очищення води. Подібним чином працюють фільтри на основі пермутіта:
Na 2 [Al 2 Si 2 O 8] + Ca 2 + = 2Na + + Ca [Al 2 Si 2 O 8] 
  
Застосування лужноземельних металів. 
Стронцій застосовують при виплавці бронз і міді - він пов'язує сірку, 
фосфорвуглець і підвищує плинність шлаку. Таким чином, Sr сприяє очищенню металу від численних домішок. Крім того, добавка стронцію підвищує механічні характеристики міді (майже не знижуючи її електропровідності), чавуну, сталі. Летючі солі стронцію застосовуються в піротехніку. У електровакуумні трубки стронцій вводять, щоб поглинути залишки кисню та азоту - зробити вакуум більш глибоким. Багаторазово очищений стронцій використовують як відновника при отриманні U. Стронцій застосовують в радіоелектроніці для виготовлення фотоелементів. Також він використовується в скловарінні для отримання спеціальних оптичних стекол, які володіють великою хімічною стійкістю і великим показником заломлення. З'єднання стронцію входять до складу емалей, глазурей і кераміки. Їх широко використовують у хімічній промисловості як наповнювачі гуми, стабілізаторів пластмас, а також очищення каустичної соди від заліза та марганцю, в якості каталізаторів в органічному синтезі і при крекінгу нафти. 
Барій в основному знаходить застосування у зв'язаному стані. ВаSO 4 добре поглинає рентгенівське випромінювання, тому його використовують при рентгенодіагностиці. Баритові білила використовують як білої фарби. ВАЛТ 3 входить до складу суміші для цементації сталі. 
Сплави Pb-Ba використовують в поліграфії, слави Ва-Ni - для виготовлення електродів запальних свічок двигунів і в радіолампах. ВаTiO 3 один з найважливіших сегнетоелектриків. Алюмінат барію використовують для виготовлення діелектриків і постійних магнітів. Барій вводять в антифрикційні сплави. ВаО 2 використовується як відбілювач тканин, служить для отримання перекису водню і входить до складу запальних сумішей, як окислювач. Ва (NO 3) 2 знаходить застосування в піротехніці. Пофарбований солі барію є пігментами: BaCrO 4 - жовтий, BaMnO 4 - зелений. ВаF 2 застосовують для виготовлення емалей і оптичних стекол. [ВаPt (CN) 6]використовують для покриття деяких фосфоресцентних екранів. 
Останнім часом застосування радію істотно скоротилося тому широко використовуються радіоактивні ізотопи. Він зберіг своє призначення як джерело радону для радонових ванн. У невеликих кількостях у суміші з Ве радій використовують для приготування нейтронних джерел, а в суміші з ZnS - при виробництві светосоставов. Іноді радій застосовують для дефектоскопії 
лиття зварних швів, а також для зняття електростатичних зарядів. 
У вигляді чистого металу кальцій застосовують як відновник U, Th, Cr, V, Zr, Cs, Rb, Na, K, Ti та деяких рідкоземельних металів та їх сполук. Його використовують також для розкислення сталей, бронз та інших сплавів, очищення свинцю і олова від вісмуту і сурми. Також використовують для видалення сірки з нафтопродуктів і зневоднення органічних рідин; для очищення аргону від домішок азоту і в якості поглинача газів в електровакуумних приладах. Велике застосування в техніці отримали антіфікціонние матеріали системи Pb - Na - Ca. Добавка 0,05% кальцію до свинцю різко покращує механічні характеристики останнього. Сплави Pb - Ca, служать для виготовлення оболонок електричних кабелів. Сплав Si - Ca (силікокальцій) застосовується як розкислювач і дегазатор у виробництві якісних сталей. Сплав кальцію (до 70%) з цинком застосовується для виготовлення пінобетону. Широке застосування в скляної промисловості знайшов оксид кальцію. Також він застосовується для футеровки печей і отримання гашеного вапна. Гідросульфіт кальцію застосовують у виробництві штучного 
волокна і для очищення кам'яновугільного газу. СаOCl 2 є гарним окислювачем, і застосовується як відбілювач, а також як дезінфікуючий засіб. Перекис кальцію використовується в готуванні косметичних препаратів та зубної пасти. Отруйні сполуки кальцію з миш'яком використовують для знищення шкідників. Фосфати кальцію застосовуються як добрива. Кальцій - один із біогенних елементів, необхідних для нормального протікання життєвих процесів. Він присутній у багатьох тканинах багатьох тварин і рослин. Широко його використання в медицині. 
  
Використана література: 
1. Бєляєв А. І. 
Історія магнію. М.: Наука, 1974. 
2. Лур'є Ю. Ю. 
Довідник з аналітичної хімії, 1962. 
3. Миколаїв Р. І. Магній служить людині. М.: Металургія, 1978. 
4. Самсонов Г.В., Пермінов В. П. Магніди. 
Київ: Наукова думка, 1971. 
5. Тихонов В. М. 
Аналітична хімія магнію. М.: Наука, 1973. 
6. Дріца Є. М. Властивості елементом. Довідник. М.: Металургія, 1985. 
7. Дж. Державін, Дж. Баддері. Берилій. Издат. іноземної літератури, М.1962. 
8. Коган Б.І. Рідкісні метали. М.: Наука, 1979. 
9. Бусева А. І. Визначення, 
поняттятерміни в хімії. М.: Просвещение, 1981. 
10. Нікольський Б. П. Довідник хіміка. Т-2. М.: 
Хімія, 1964. 
11. Некрасов Б. В. Основи загальної хімії. М.: 
Хімія, 1967. 
12. Я.А. Угай. Неорганічна хімія. М.: Вища 
школа, 1989. 
13. Петрянов-Соколов І.В., Черненко М.Б., станції В. В. Популярна бібліотека хімічних елементів. М.: Наука, 1972. 
14. Ріпа Р., Четяну І. Неорганічна хімія. М.: Світ, 1971. 
15. 
Ресурси Internet. 
  

Категорія: Хімія | Додав: Natar (07.05.2017)
Переглядів: 770 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]
Форма входу
Пошук
Block title
Block title

Copyright MyCorp © 2024